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Excursion sets of Gaussian random fields �GRFs� have been frequently used in the literature to model
two-phase random media with measurable phase autocorrelation functions. The goal of successful modeling is
finding the optimal field autocorrelation function that best approximates the prescribed phase autocorrelation
function. In this paper, we present a technique which uses convex quadratic programming to find the best
admissible field autocorrelation function under a prescribed discretization. Unlike previous methods, this
technique efficiently optimizes over all admissible field autocorrelation functions, instead of optimizing only
over a predetermined parametrized family. The results from using this technique indicate that the GRF model
is significantly more versatile than observed in previous studies. An application to modeling a base-catalyzed
tetraethoxysilane aerogel system given small-angle neutron scattering data is also presented
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I. INTRODUCTION

Models based on Gaussian random fields �GRFs� �1–7�
have been employed in the literature to study a variety of
two-phase material systems. These systems include foamed
solids �8�, mass and surface fractals �9�, polymer blends �10�,
aerogels �12,13�, sandstone �14�, tungsten-silver composites
�15�, heather incidence �16�, sulphide ores �17�, and cellular
solids �18�.

Often the construction of a GRF model is based on an
experimentally derived two-point phase probability function
S2�x ,y�, defined to be the probability that two points
x ,y�Rd both lie in the solid phase. �We will assume
throughout this paper that the material consists of a pore
phase and a solid phase; however, the techniques described
in this paper may be extended to other two-phase materials.�
We will assume that S2 is both translationally and rotation-
ally independent, so that S2 may be written as a function of
r= �x−y�, the distance between the two points. For negative
values of r, we extend S2 to be an even function.

Clearly, S2�0�=� is the volume fraction of the solid
phase. Also, for any random material without long-range or-
der, we have

lim
r→�

S2�r� = �2.

The phase autocorrelation function is defined as
��r�=S2�r�−�2. This function must be positive definite �19�
so that its Fourier transform �̃�k� is non-negative for all wave
numbers k. Many techniques for measuring ��r� for random
materials have been proposed in the literature, including the
use of small-angle scattering data described in Sec. V.

In this paper, we consider isotropic GRFs Y with mean 0
and variance 1. Such GRFs are completely characterized by
the field autocorrelation function G�r�= �Y�x�Y�y��, where
r= �x−y�. �This function should not be confused with the
phase autocorrelation function ��r�.� A one-cut GRF model
�also called an excursion set� is specified by the microstruc-
ture indicator function I�x�=H�Y�x�−��, where H is the
Heaviside step function and � is a given threshold.

Some of the material systems listed above were modeled
with a one-cut GRF model. Variants of this model were used
for the other systems, including the two-cut model �defined
in Sec. III C� and unions and intersections of individual GRF
models.

We will denote by P the set of admissible field autocor-
relation functions, or the set of all G�r� so that there is a GRF
with field autocorrelation function G. It can be shown that
�20�

P = �G � L2�0,��:G�0� = 1 and G is positive definite	 .

Therefore, to model a two-phase random material by a one-
cut GRF model, the appropriate threshold level � and field
autocorrelation function G�r� must be determined. The value
of � may be determined from the solid-phase volume frac-
tion � via

� =
1


2�
�

−�

�

e−t2/2dt . �1�

In this paper, we will assume that � is exactly measurable, so
that the threshold � may be regarded as exact.

By contrast, determining the optimal field autocorrelation
function G�r� in P is more problematic. For the one-cut GRF
model, the phase autocorrelation function is known to be
equal to �21�
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X�r� =
1

2�
�

0

G�r� 1

1 − t2

exp�−
�2

1 + t

dt . �2�

Loosely speaking, the primary goal of modeling is to choose
G�r� so that X�r� is close to the desired ��r�. Unfortunately,
this task is not as simple as setting ��r�=X�r� in �2�. Al-
though the integral in �2� may be inverted since the integrand
is monotone, thus permitting numerical evaluation of the up-
per limit of integration, the obtained function may not be in
P. We will define g�r� to be the function obtained from ��r�
via

��r� =
1

2�
�

0

g�r� 1

1 − t2

exp�−
�2

1 + t

dt . �3�

We use lower-case g in �3� to indicate that this function may
not be positive definite.

To get around this difficulty, previous researchers have
found the function G�r� which is optimal within a param-
etrized family in P. Examples of such families include, in
one dimension �17�,

G�r� = exp�− arb� ,

G�r� = �1 −
3r

2a
+

r3

2a3 , 0 � r � a ,

0, r 	 a ,
�

where a
0 and b
0. In three dimensions, parametrized
families include �9,12,14�

G�r� =
3�sin ar − sin cr� − 3r�a cos ar − c cos cr�

r3�a3 − c3�
,

G�r� =
e−r/a − �c/a�e−r/c

1 − �c/a�
sin�br�

br
,

G�r� = e−r/a�1 +
r

a

 sin�br�

br
,

where a
c
0 and b
0. Other examples of parametrized
families within P may be found in Cressie �22�, Roberts and
Torquato �14�, and Nott and Wilson �17�.

Once a parametrized family has been chosen, some algo-
rithm for estimating the optimal parameters is executed. Ex-
amples of such search algorithms include simulated anneal-
ing �13� and the expectation-maximization �EM� method
�23�. The goal of these algorithms is usually to search for the
parameters which minimize the L2 norm

�
0

�

���r� − X�r��2dr ,

where ��r� is the autocorrelation function to be fitted and
X�r� is computed for the one-cut GRF model by using �2�. In
practice, a discrete form of this integral is usually minimized.

There is a fundamental conceptual difficulty with using
parametrized families: there is no reason a priori to think
that the optimal G�r� belongs to any predetermined family

within P. In this paper, we introduce an algorithm for com-
puting G�r� that does not rely upon fitting parameters. This
algorithm searches over discretizations of all functions in P
to find the optimal field autocorrelation function. In practice,
discretization does not introduce a significant loss of infor-
mation since the modeler will usually measure ��r� at a large
but finite number of values. Using discretization reduces the
present optimization problem to a convex quadratic program
with linear constraints, a standard problem in operations re-
search which may be solved by using either boundary or
interior-point methods.

Algorithms appropriate for models in one and three di-
mensions are given in Secs. II C and IV A, respectively. Ex-
perience has shown that these algorithms are very efficient
computationally. In other words, this technique simulta-
neously optimizes on a broad search of P �as opposed to a
narrow search over a parametrized family within P� and typi-
cally finds the optimal solution within seconds of runtime on
a desktop microcomputer.

In Sec. II, we describe the convex quadratic programming
algorithm for one-dimensional models. Test results of the
algorithm for various functions ��r� for one-dimensional
two-phase random media are presented in Sec. III. The gen-
eralization of the algorithm to three-dimensional systems and
its application to two different models are presented in Sec.
IV. We will see that the GRF model is more versatile than
expected and can even produce a phase autocorrelation func-
tion ��r� which exhibits the qualitative behavior of systems
of impenetrable particles. Finally, in Sec. V, we compute an
improved GRF model for a base-catalyzed tetraethoxysilane
aerogel system, for which the function ��r� is extracted from
small-angle neutron scattering data.

II. ALGORITHM FOR ONE-DIMENSIONAL MODELS

A. Exact formulation in real space

We assume that the phase autocorrelation function ��r� is
known, either theoretically or from experimental measure-
ment. As discussed in the Introduction, the function g�r� may
be obtained in principle from ��r� by inverting the integral
�3�. However, the function thus obtained may violate the
requirement of positive definiteness and thus may not belong
to P.

Therefore, after numerically computing g�r� from �3�, the
optimal function G�r� in P may be defined as the solution of
the following minimization problem:

Minimize �
0

�

�g�r� − G�r��2dr �4�

subject to G̃�k� 	 0 for all k 	 0,

G�0� = 1.

Since G is an even function, the one-dimensional Fourier
transform and its inverse transform are defined by

G̃�k� =
 2

�
�

0

�

G�r�cos krdr , �5�
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G�r� =
 2

�
�

0

�

G̃�k�cos krdk . �6�

Since the set P is convex within L2�0,��, if g is any
function in L2, then there is a unique function G in P which
minimizes the L2 norm �g−G� �24�. In other words, the mini-
mization problem �4� has a unique solution.

B. Exact formulation in Fourier space

This minimization problem �4� may be written in Fourier
space by using Parseval’s equality

�
0

�

�f�r��2dr = �
0

�

� f̃�k��2dk

and the equation

G�0� =
 2

�
�

0

�

G̃�k�dk

obtained by setting r=0 into �6�. The minimization problem
thus takes the equivalent form

Minimize �
0

�

�g̃�k� − G̃�k��2dk �7�

subject to G̃�k� 	 0 for all k 	 0,

�
0

�

G̃�k�dk =
�

2
.

As before, this minimization problem has a unique solu-
tion. However, the analytical determination of the solution
appears to be intractable.

C. Discrete formulation

As discussed in the Introduction, one way of getting
around the difficulty of solving �7� analytically is by optimiz-
ing only over a parametrized subset of P. Conceptual and
computational difficulties with this approach were also dis-
cussed in the Introduction.

Another way of solving �7� is by considering a dis-
cretized form of this minimization problem. Let g̃i= g̃�i�k�
�i=0, . . . ,N� represent values of g̃�k� on a evenly spaced
partition of �0,N�k�, where N is a large number and �k is a
prescribed step size. Using the trapezoid rule, �7� may be
approximated by the following discrete minimization prob-
lem:

Minimize �
i=0

N

�g̃i − G̃i�2 �8�

subject to G̃i 	 0 for i = 0,…,N ,

G̃0 + G̃N + �
i=1

N−1

2G̃i =

2�

�k
.

The minimization problem �8� is a convex quadratic program

with linear constraints in the decision variables �G̃i	, where
i=0, . . . ,N. Therefore, there is a unique set of decision vari-
ables which minimizes this objective function �25�.

This convex quadratic program may be solved by a vari-
ety of techniques. In this paper, we primarily used the soft-
ware package LOQO �26�, which utilizes an interior-point al-
gorithm for solving quadratic programs. Experience has

shown that the optimal �G̃i	 is found within seconds on a
1-GHz desktop microcomputer; using discretizations of N
=5000, 10 000, 20 000, and 40 000 for the modeling prob-
lems described in this paper, LOQO found the optimal solu-
tion in approximately 0.9, 2.4, 6.4, and 25.1 seconds, respec-
tively. During the initial stages of testing, we also used
MATHEMATICA to verify our results.

Once the optimal solution �G̃i	 of �8� is found, discrete
values for the autocorrelation function �Gi	 may be found by
numerically computing the inverse Fourier integral �6�. The
phase autocorrelation function X�r� for the resulting GRF
model may be found by using �2� and interpolation.

Summarizing, given the solid volume fraction � and the
phase autocorrelation function ��r�, the convex quadratic
programming algorithm is as follows:

�1� Choose parameters N and �k to specify the discreti-
zation.

�2� Use �1� to compute � from �.
�3� Use �3� to compute g�r� from ��r�.
�4� Use the Fourier transform �5� to compute g̃i= g̃�i�k�

for i=0, . . . ,N.

�5� Solve the convex quadratic program �8� to find G̃i for
i=0, . . . ,N.

�6� Use �6� to compute values of G�r�, the optimal field
autocorrelation function.

�7� Use �2� to compute values of X�r�, the optimal phase
autocorrelation function arising from a one-cut GRF model.

Naturally, numerical approximations of the integrals ref-
erenced above are typically used in lieu of analytical calcu-
lations.

The model may be validated by comparing the graph of
X�r� with the original phase autocorrelation function ��r�.
Another technique for potentially validating the model in-
volves comparing higher-order microstructural information,
such as the chord-length density function �14�, for the GRF
model with the original model. This analysis will be the sub-
ject of a future paper.

III. TEST RESULTS IN ONE DIMENSION

In this section, we present the results of using the algo-
rithm in Sec. II C to fit various one-dimensional test models
to the one-cut GRF model.

A. Boolean model of equal-sized rods

We begin with a Boolean model ��27�, Chap. 3� of unit-
length rods with Poisson intensity �. For this model, the
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volume fraction of the solid phase is �=1−e−�, while the
phase autocorrelation function is

��r� = �e−��1+r� − e−2�, 0 � r � 1,

0, r 
 1.
�

In Fig. 1, we present these inputs ��r� �in dashed lines�
with the outputs X�r� for the optimal GRF model. We choose
three volume fractions: �=0.15, �=0.50, and �=0.85. We
see that the GRF model fits the Boolean model better at large
values of �. This makes intuitive sense; at small values of �,
the Boolean model will consist of rarely overlapping lines of
equal size, a geometry not especially suited for the GRF
model. On the other hand, at large values of �, there will be
considerable overlap in the Boolean model, and the clusters
that are formed will have a range of sizes. For these Boolean
models, the GRF model can be more accurately fitted.

In Fig. 2, we show the corresponding graphs for g�r� and
G�r�; these are represented with dashed and solid lines, re-
spectively. As discussed above, the functions g�r� exactly
correspond to ��r� but may not be positive definite. The dis-
cretized functions G�r� represent the closest positive definite
functions �under the L2 norm� to the input functions g�r�.

In Fig. 3, we show the corresponding graphs of g̃�k� and

G̃�k� for �=0.15. The graphs represent the input and output
of the convex quadratic programming algorithm. In particu-
lar, the output function is the closest �under the discretiza-

tion� non-negative function G̃�k� whose integral over the en-
tire wave-number domain matches the integral for the input
function. As described in Sec. II C, the functions G�r� in Fig.
2 and X�r� in Fig. 1 are computed using this optimized func-
tion.

For �=0.50 and �=0.85, the functions g̃�k� assumes
negative values for fewer inputs k. Correspondingly, the

graphs of g̃�k� and G̃�k� for the other volume fractions are
qualitatively similar to Fig. 3, but the input and output func-
tions are not as markedly different from each other.

B. Impenetrable rods

Next, we test the ability of GRFs to model a system of
impenetrable unit-length rods at thermal equilibrium. If the
volume fraction of the rod phase is �, then the phase auto-
correlation function is �28�

��r� = − �2 + �1 − ���
j=0

M
1

j!
� �r − j��

1 − �
�k

exp�−
�r − j��
1 − �

� ,

where M �r�M +1.
Notice that there is a cusp in the graph of ��r� at r=1.

Since this model consists of nonoverlapping rods, we would
expect that the GRF model is not particularly well-suited to
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Output for φ = 0.15
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FIG. 1. The phase autocorrelation functions ��r� for a Boolean
model of unit-length rods �dashed lines� at �=0.15, �=0.50, and
�=0.85, and the best-fit autocorrelation functions X�r� for a one-cut
GRF model. The GRF model becomes a better approximation to the
Boolean model as the volume fraction of the rod phase increases.
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Output for φ = 0.50
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FIG. 2. As in Fig. 1, except showing the field autocorrelation
function. The dashed curves of g�r� correspond to the exact ��r� but
are not positive definite. The solid curves G�r� represent the closest
positive definite functions to the dashed curves.

0 5 10 15 20 25
k

0

0.1

0.2

0.3

0.4

0.5

0.6

g~
(k

),
G~

(k
)

Input for φ = 0.15
Output for φ = 0.15

FIG. 3. As in Fig. 1, except showing the Fourier transform of
the field autocorrelation function for �=0.15. The dashed curve
g̃�k� corresponds to the exact ��r� but can be negative at some wave
numbers k. Discretizations of these curves are used as input in the

convex quadratic programming algorithm. The output G̃�k� of the
algorithm, which solves the convex quadratic program �8�, is shown
with the solid curve. �The corresponding graphs for �=0.50 and
�=0.85 are similar, but the input and output graphs are not as
markedly different at these higher volume fractions.�
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this model. This may be seen in Fig. 4, where we plot ��r�
and X�r� for �=0.15 and �=0.50. Nevertheless, we see that
the graph of X�r� for �=0.50 exhibits the oscillatory behav-
ior indicative of systems of impenetrable particles. In fact, as
seen in Fig. 5, the graphs of ��r� and X�r� are remarkably
similar for �=0.85.

C. Two-cut GRF model

Our last one-dimensional example will be matching a
one-cut GRF model to a two-cut GRF model. If Y�x� is the
underlying Gaussian random field, the two-cut model is de-
fined by assigning phases according to whether the condition
��Y�x��
 is satisfied, where � and 
 are given cut param-
eters. For the two-cut model, the phase autocorrelation func-
tion is �11�

��r� =
1

2�
�

0

f�r� 1

1 − t2�exp�−

�2

1 + t



− 2 exp�−
�2 − 2�
t + 
2

2�1 − t2� 
 + exp�−

2

1 + t

�dt .

�9�

The volume fraction of the model is given by

� =
1


2�
�

�




e−t2/2dt .

Also, the function f�r� is positive definite and represents the
field autocorrelation function of Y�x�.

To test the algorithm, we used f�r�=e−r2
and tried three

different sets of parameters for a and b, �a ,b�= �0,1�,
�a ,b�= �−1,1�, and �a ,b�= �−1,2�. In these examples, the
function g̃�k� was only negative for very few wave numbers
k. Therefore, a one-cut GRF model can closely match the
phase autocorrelation functions for these two-cut models.
Through this computation, we also directly confirm that the
two-cut GRF model can produce images not exactly obtain-
able with a one-cut model.

We also tried the function f�r�=e−r in the definition �9�.
For all values of a and b attempted, the function g̃�k� turned
out to be positive, so that g�r� was already positive definite.
Since Gaussian random fields are statistically specified by
their field-field correlation functions, this means that the ge-
ometries described by these two-cut models with this choice
of f�r� are exactly obtainable by a one-cut model.

IV. APPLICATION TO THREE-DIMENSIONAL MODELS

A. Details of algorithm

The extension of the above work to a three-dimensional
GRF model is straightforward. Under the assumption of isot-
ropy, the required Fourier transforms are

G̃�k� =
 2

�
�

0

�

r2G�r�
sin kr

kr
dr , �10�

G�r� =
 2

�
�

0

�

k2G̃�k�
sin kr

kr
dk . �11�

Therefore, the constraint G�0�=1 has the discrete form

N2G̃N + �
i=1

N−1

2i2G̃i =

2�

��k�3 ,

where N and �k are as before.
In three dimensions, we will seek the isotropic function

G�x� which minimizes the space integral

�
R3

�g�x� − G�x��2dx = 4��
0

�

r2�g�r� − G�r��2dr .

Using Parseval’s equality, this is equivalent to minimizing

0 1 2 3 4
r
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0.25
χ(

r)
,X

(r
)

Input for φ = 0.15
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Input for φ = 0.50
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FIG. 4. The phase autocorrelation functions ��r� for totally im-
penetrable unit-length rods in thermal equilibrium �dashed lines� at
�=0.15 and �=0.50, and the best-fit autocorrelation functions X�r�
for a one-cut GRF model �solid lines�. The fits are not as tight as in
Fig. 1; this is not surprising since the GRF model is ill-suited for
impenetrable rods.
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FIG. 5. As in Fig. 4, except for �=0.85. The fit is fairly tight,
showing that the GRF model is versatile enough to exhibit the
qualitative behavior of certain systems of impenetrable particles.
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�
0

�

k2�g̃�k� − G̃�k��2dk .

Taking the discrete form of this integral, the minimization
problem for fitting a one-cut GRF in three dimensions is
therefore

Minimize �
i=1

N

i2�g̃i − G̃i�2 �12�

subject to G̃i 	 0 for i = 1,…,N ,

N2G̃N + �
i=1

N−1

2i2G̃i =

2�

��k�3 .

The convex quadratic programming algorithm in three di-
mensions is as follows:

�1� Choose parameters N and �k to specify the discreti-
zation.

�2� Use �1� to compute � from �.
�3� Use �3� to compute g�r� from ��r�.
�4� Use the Fourier transform �10� to compute

g̃i= g̃�i�k� for i=1, . . . ,N.

�5� Solve the convex quadratic program �12� to find G̃i for
i=1, . . . ,N.

�6� Use �11� to compute values of G�r�, the optimal field
autocorrelation function.

�7� Use �2� to compute values of X�r�, the optimal phase
autocorrelation function arising from a one-cut GRF model.
The model may be validated by comparing the graph of X�r�
with the original phase autocorrelation function ��r�.

B. Fully penetrable spheres

We now discuss the application of this algorithm to two
different systems based on spheres of unit diameter. Our first
three-dimensional test model is the Boolean model. If the
underlying Poisson process has intensity �, the volume frac-
tion of the solid phase is �=1−exp�−�� /6�, while the phase
autocorrelation function is ��19�, Sec. 5.1.1�

��r� = �exp�−
���2 + 3r − r3�

12

 − exp�−

��

3

 , 0 � r � 1,

0, r 
 1.
�

This input function ��r� and the output autocorrelation function X�r� from the GRF model are shown in Fig. 6 for
�=0.15, �=0.50, and �=0.85. As before, the quality of the fit improves as � increases. These fits are much tighter than the
analogous models in one dimension �shown in Fig. 1�. In fact, on the scale of this figure, the functions ��r� and X�r� are barely
distinguishable for �=0.50 and �=0.85.

C. Impenetrable spheres

The second test model we consider is a certain “well-stirred” model of impenetrable spheres of unit diameter. If
��0.125, the phase autocorrelation function is �29,30�

��r� =���1 − �� −
3�r

2
+

��1 + 3��r3

2
−

9�2r4

10
+

�2r6

35
, 0 � r � 1,

�2�r − 2�4�9 − 17r − 16r2 − 2r3�
70r

, 1 � r � 2,

0, r 	 2.
�
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FIG. 6. The phase autocorrelation functions ��r� for a Boolean
model of unit-diameter spheres �dashed lines� at �=0.15, �=0.50,
and �=0.85, and the best-fit autocorrelation functions X�r� for a
one-cut GRF model. The fits are much tighter than the analogous
one-dimensional models; on the scale of this figure, the fits X�r� are
not easily distinguishable from the original ��r� for �=0.50 and
�=0.85.

JOHN A. QUINTANILLA AND W. MAX JONES PHYSICAL REVIEW E 75, 046709 �2007�

046709-6



However, if �
0.125, then this model is not realizable, a
fact which has been confirmed by simulations �31�.

This input function ��r� and the output autocorrelation
function X�r� from the GRF model are shown in Fig. 7 for
�=0.05 and �=0.125. Not surprisingly, since the GRF
model is not particularly suited for impenetrable sphere mod-
els, the fits are not as close as in the Boolean model. How-
ever, it is again surprising that a GRF model can be found
whose phase autocorrelation function exhibits the qualitative
behavior expected of systems of impenetrable particles.

Though we do not do so here, this algorithm may be
applied to other models of impenetrable spheres besides the
“well-stirred” model. Expressions of ��r� for other com-
monly used models are presented by Markov and Willis �30�
and by Torquato ��19�, Sec. 5.2.1�.

V. APPLICATION TO AEROGELS

In Secs. III and IV, we considered the application of the
GRF model to various theoretical models of random materi-
als. In this section, we model a specific tetraethoxysilane
�TEOS� aerogel using small-angle neutron scattering
�SANS� experimental data. We will see that the resulting
GRF model has an experimental scattering function that
closely resembles the experimental data. Therefore, using
scattering data as input, the resulting GRF model may be
used to generate predictive realizations of this aerogel.

A. Recovery of �„r… from scattering data

In the absence of multiple scattering �a reasonable as-
sumption for aerogels and other materials with a low volume
fraction�, the scattering intensity is given by �32�

I�q� = I0 + V�2�
0

�

4�r2��r�
sin qr

qr
dr , �13�

where I0 is background noise, V is the volume of the mate-
rial, and � is the scattering density of the solid phase. In
principle, given the intensity function, the phase autocorrela-
tion function may be computed using the inverse Fourier
transformation,

��r� =
1

2�2V�2�
0

�

�I�q� − I0�q2sin qr

qr
dq . �14�

However, in practice, this is problematic since ��r� must be
positive definite, a requirement that may be violated after the
numerical computations.

We now assume that discrete scattering intensity data
�qj , I�qj�	 is experimentally measured. To use the convex
quadratic programming to match this scattering data, an extra
layer of computation is added to the algorithm, namely, the
extraction of ��r� from I�q� using �14�. This extraction en-
tails measurement of the background noise I0 and also the
constant V�2. To estimate the background noise, we will use
the asymptotic behavior ��19�, Sec. 2.2.5�

I�q� − I0 �
a

q4 +
b

q6 +
c

q8 as q → � . �15�

The background noise I0 is thus estimated to be the number
that gives the best approximation to this asymptotic behavior.
Furthermore, the values of a, b, and c are obtained by least-
squares fitting to some subset of the largest frequencies qj
used in the experiment.

In summary, given experimental data on a limited set of
frequencies within �0,Q�, the integral �14� may be approxi-
mated by

��r� �
1

2�2V�2��
0

Q

�I�q� − I0�q2sin qr

qr
dq

+ �
Q

� � a

q2 +
b

q4 +
c

q6
 sin qr

qr
dq� , �16�

where Q=max�qj	. For discrete experimental data, the first
integral may be approximated by the trapezoidal rule for un-
even step sizes. We note that, for bounded intensity data,
omission of the second integral would necessarily cause
���0�=0, a mathematical impossibility ��27�, Sec. 6.2�.
Therefore, determining the approximate asymptotic behavior
of the scattering data is an essential step in determining ��r�.

To compute V�2, we will use the fact that ��0�=�−�2,
where again � is the �directly measurable� volume fraction
of the solid phase of the aerogel. Substituting into �16�, we
find that

� − �2 =
1

2�2V�2��
0

Q

q2�I�q� − I0�dq

+ �
Q

� � a

q2 +
b

q4 +
c

q6
dq� .

This equation permits the evaluation of the constant V�2.
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FIG. 7. The phase autocorrelation functions ��r� for the well-
stirred model of totally impenetrable spheres of unit diameter
�dashed lines� at �=0.05 and �=0.125, and the best-fit autocorre-
lation functions X�r� for a one-cut GRF model �solid lines�. The fits
are not as tight as in Fig. 6; this is not surprising since the GRF
model is ill-suited for impenetrable spheres.
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This function ��r� thus obtained from experimental inten-
sity data may or may not be positive definite due to both
experimental errors and the computational inaccuracies in-
herent to the approximations used above. Nevertheless, we
may proceed with the algorithm in Sec. IV A to obtain the
closest-fitting X�r� arising from a one-cut GRF model.

B. Results for TEOS

In Fig. 8, we show SANS data for the TEOS aerogel �in
dots� and the theoretical scattering curve I�q� for the optimal
GRF model. This scattering curve was obtained by comput-
ing X�r�, as described in Sec. IV A, and then numerically
evaluating �13�, with X�r� in place of ��r�. We see that this
optimal GRF model provides an excellent fit to the experi-
mental data. The fit is acceptable even for low frequencies q,
a region known to be difficult for modeling.

For comparison, the theoretical scattering curve of a pre-
viously obtained GRF model for the TEOS aerogel is also
presented �13�. In this previously obtained model, the field
autocorrelation function was found by optimizing over the
three-parameter family of three-dimensional field autocorre-
lation functions given in Sec. I. �Also, this model was ob-
tained from the intersection of two GRF models which use
two cuts, as in Sec. III C.�

We see in Fig. 8 that this previous theoretical scattering
curve generally tracked the experimental data but was mea-
surably different in several places, especially for q�0.02
and for 0.04�q�0.05. By contrast, the algorithm in Sec.
IV A produces a much tighter fit to the experimental data
obtained.

The GRF model may be used to produce predictive visu-
alizations of the TEOS aerogel, a fundamental goal of ana-
lyzing the microstructure of materials. Our visualization,
shown in Fig. 9, was generated by using the turning-bands

method �33,34� and has a strong morphological resemblance
to a transmission electron microscopy image of the aerogel
�13�.

The improved GRF model found in this paper can also be
expected to predict other properties of the aerogel besides the
scattering function, such as connectivity and pore-size infor-
mation. These and other microstructure characterizations will
be considered in future papers.

VI. CONCLUSIONS AND FUTURE STUDIES

We have used convex quadratic programming to effi-
ciently find the optimal Gaussian random field to fit a pre-
scribed phase autocorrelation function ��r�. The techniques
used in this paper have the simultaneous advantages of com-
putational efficiency and searching through all possible field
autocorrelation functions. Tests of this algorithm in one and
three dimensions show that the GRF model is surprisingly
versatile, fitting even systems of impenetrable particles with
reasonable accuracy. We have illustrated the power of this
algorithm by generating a GRF model whose theoretical
scattering curve closely matches experimentally obtained
scattering data.

This versatility had not been observed in previous studies
of the GRF model, in which searches were restricted to
within a predetermined parameterized family of admissible
field autocorrelation functions. Therefore, it seems reason-
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FIG. 8. Small-angle neutron scattering data for a TEOS aerogel,
and the theoretical scattering function for the optimal GRF model
�solid line�. Also shown as a dashed line is the scattering function
for a previously obtained GRF model found by optimizing over a
certain parametrized family of admissible field autocorrelation
functions. We see that the convex quadratic programming algorithm
provides a significantly tighter fit than modeling over a specific
parametrized family.

FIG. 9. �Color online� A realization of the GRF model for the
TEOS aerogel, generated by using the turning-bands method. The
dimensions of this realization are 1500�1500�187.5 Å. This re-
alization bears a strong morphological resemblance to transmission
electron microscopy images of the actual aerogel �13�.
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able that such families should be used only when there are
physical or other considerations that restrict the underlying
field autocorrelation function.

The optimal Gaussian random field may be found without
undue complication if the autocorrelation function ��r� is
exactly known. However, if ��r� is implicitly defined
through scattering data, then the parameters I0, a, b, and c in
�15� must first be obtained before applying the algorithm. In
a future paper, we will explore modeling issues that arise
from making such estimates.

In this paper, only the phase autocorrelation function ��r�
�or, equivalently, the intensity function I�q�� was used to find
the optimal GRF model. However, it is well known that ��r�
alone does not uniquely specify higher-order microstructural
information like clustering and percolation. For example, the
phase autocorrelation function ��r�=ae−cr may be obtained
from the Poisson line tesselation model �27� as well as a
Debye model �35� constructed via stochastic optimization,
another technique for finding random media with a pre-
scribed ��r� �35–38�. In future work, we will consider the
application of the convex quadratic programming approach
to find optimal GRF models by using higher-order micro-
structural information. �For completeness, we note that it has
been mathematically proven that ��r� completely determines
microstructures within several types of models, such as GRF

models �22� and models of convex polygons �39�. Further-
more, recent computational work using stochastic optimiza-
tion �38� suggests that periodic microstructures may be
uniquely specified by ��r�.�

The convex quadratic programming algorithm described
in this paper may be used in conjunction with stochastic
optimization. Previous implementations of stochastic optimi-
zation have used a random array of pixels as an initial con-
figuration. Using the techniques described in this paper, a
realization of an appropriate GRF model can instead be cho-
sen as the initial configuration. By choosing a configuration
whose phase autocorrelation function X�r� reasonably ap-
proximates the target ��r�, valuable computational time and
effort may be saved when using stochastic optimization. This
application of this algorithm and others will be discussed in
future papers.
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